Ask AI

You are viewing an unreleased or outdated version of the documentation

Source code for dagster_dbt.dbt_project

import logging
import os
from pathlib import Path
from typing import Optional, Sequence, Union

from dagster._annotations import experimental
from dagster._model import DagsterModel

from .errors import DagsterDbtManifestNotFoundError, DagsterDbtProjectNotFoundError

logger = logging.getLogger("dagster-dbt.artifacts")


def using_dagster_dev() -> bool:
    return bool(os.getenv("DAGSTER_IS_DEV_CLI"))


@experimental
class DbtManifestPreparer:
    """A dbt manifest represented by DbtProject."""

    def on_load(self, project: "DbtProject") -> None:
        """Invoked when DbtProject is instantiated with this preparer."""

    def prepare(self, project: "DbtProject") -> None:
        """Called explictly to prepare the manifest for this the project."""

    def using_dagster_dev(self) -> bool:
        return using_dagster_dev()

    def parse_on_load_opt_in(self) -> bool:
        return bool(os.getenv("DAGSTER_DBT_PARSE_PROJECT_ON_LOAD"))


@experimental
class DagsterDbtManifestPreparer(DbtManifestPreparer):
    def __init__(
        self,
        generate_cli_args: Optional[Sequence[str]] = None,
    ):
        """The default DbtManifestPreparer, this handler provides an experience of:
            * During development, reload the manifest at run time to pick up any changes.
            * When deploying, expect a manifest that was created at build time to reduce start-up time.

        Args:
            generate_cli_args (Sequence[str]):
                The arguments to pass to the dbt cli to generate a manifest.json.
                Default: ["parse", "--quiet"]
        """
        self._generate_cli_args = generate_cli_args or ["parse", "--quiet"]

    def on_load(self, project: "DbtProject"):
        if self.using_dagster_dev() or self.parse_on_load_opt_in():
            self.prepare(project)
            if not project.manifest_path.exists():
                raise DagsterDbtManifestNotFoundError(
                    f"Did not find manifest.json at expected path {project.manifest_path} "
                    f"after running '{self.prepare.__qualname__}'. Ensure the implementation respects "
                    "all DbtProject properties."
                )

    def prepare(self, project: "DbtProject") -> None:
        from .core.resources_v2 import DbtCliResource

        if project.dependencies_path.exists() and not project.packages_install_path.exists():
            (DbtCliResource(project_dir=project).cli(["deps", "--quiet"]).wait())

        (
            DbtCliResource(project_dir=project)
            .cli(
                self._generate_cli_args,
                target_path=project.target_path,
            )
            .wait()
        )


[docs]@experimental class DbtProject(DagsterModel): """Representation of a dbt project and related settings that assist with managing manifest.json preparation. By default, using this helps achieve a setup where: * during development, reload the manifest at run time to pick up any changes. * when deployed, expect a manifest that was created at build time to reduce start-up time. The cli ``dagster-dbt project prepare-for-deployment`` can be used as part of the deployment process to handle manifest.json preparation. This object can be passed directly to :py:class:`~dagster_dbt.DbtCliResource`. Args: project_dir (Union[str, Path]): The directory of the dbt project. target_path (Union[str, Path]): The path, relative to the project directory, to output artifacts. Default: "target" target (Optional[str]): The target from your dbt `profiles.yml` to use for execution, if it should be explicitly set. packaged_project_dir (Optional[Union[str, Path]]): A directory that will contain a copy of the dbt project and the manifest.json when the artifacts have been built. The prepare method will handle syncing the project_path to this directory. This is useful when the dbt project needs to be part of the python package data like when deploying using PEX. state_path (Optional[Union[str, Path]]): The path, relative to the project directory, to reference artifacts from another run. dependencies_path (Union[str, Path]): The path, relative to the project directory, to your dbt `dependencies.yml` file. Default: "dependencies.yml" packages_install_path (Union[str, Path]): The path, relative to the project directory, to the directory where packages are installed when the `dbt deps` command is run. Default: "dbt_packages" manifest_preparer (Optional[DbtManifestPreparer]): A object for ensuring that manifest.json is in the right state at the right times. Default: DagsterDbtManifestPreparer Examples: Creating a DbtProject with by referencing the dbt project directory: .. code-block:: python from pathlib import Path from dagster_dbt import DbtProject my_project = DbtProject(project_dir=Path("path/to/dbt_project")) Creating a DbtProject that changes target based on environment variables and uses manged state artifacts: .. code-block:: python import os from pathlib import Path from dagster_dbt import DbtProject def get_env(): if os.getenv("DAGSTER_CLOUD_IS_BRANCH_DEPLOYMENT", "") == "1": return "BRANCH" if os.getenv("DAGSTER_CLOUD_DEPLOYMENT_NAME", "") == "prod": return "PROD" return "LOCAL" dbt_project = DbtProject( project_dir=Path('path/to/dbt_project'), state_path="target/managed_state", target=get_env(), ) """ project_dir: Path target_path: Path target: Optional[str] manifest_path: Path packaged_project_dir: Optional[Path] state_path: Optional[Path] dependencies_path: Path packages_install_path: Path manifest_preparer: DbtManifestPreparer def __init__( self, project_dir: Union[Path, str], *, target_path: Union[Path, str] = Path("target"), target: Optional[str] = None, packaged_project_dir: Optional[Union[Path, str]] = None, state_path: Optional[Union[Path, str]] = None, dependencies_path: Union[Path, str] = Path("dependencies.yml"), packages_install_path: Union[Path, str] = Path("dbt_packages"), manifest_preparer: DbtManifestPreparer = DagsterDbtManifestPreparer(), ): project_dir = Path(project_dir) if not project_dir.exists(): raise DagsterDbtProjectNotFoundError(f"project_dir {project_dir} does not exist.") packaged_project_dir = Path(packaged_project_dir) if packaged_project_dir else None if not using_dagster_dev() and packaged_project_dir and packaged_project_dir.exists(): project_dir = packaged_project_dir manifest_path = project_dir.joinpath(target_path, "manifest.json") super().__init__( project_dir=project_dir, target_path=target_path, target=target, manifest_path=manifest_path, state_path=project_dir.joinpath(state_path) if state_path else None, packaged_project_dir=packaged_project_dir, dependencies_path=dependencies_path, packages_install_path=packages_install_path, manifest_preparer=manifest_preparer, ) if manifest_preparer: manifest_preparer.on_load(self)